
Maintenance/Testing of a Legacy Controlled Materials Tracking System at LLNL

UCRL-JC-122794 Ext Abs

A Legacy Controlled Materials Tracking System at LLNL:
Maintenance and Testing

Charles Parrish
Wally Yee

Gayle Zeigler

1.0 Introduction

Controlled Materials Tracking System (COMATS) is responsible for tracking controlled material at
the Lawrence Livermore National Laboratory. Types of controlled material tracked include nuclear
materials, precious metals, parts classified by shape, sealed radioactive sources, and stable
isotopes. The inventories of this material must be tracked for a variety of health, safety,
environmental and national security reasons.

COMATS is a legacy system dating back to 1988. It was first deployed on a network of DEC
MicroVAX IIs under the VMS operating system and Ingres Data Base Management System
(DBMS). It currently resides on a DEC VAX Cluster of two 4000/300. All of the applications that
make up COMATS use the Ingres Data Base Management System. Most of the software was
written in C, but there are also some FORTRAN and COBOL modules that are used to produce
reports.

COMATS is a highly interactive system. All interaction is menu and forms based. Updates are
performed in the form of transactions, which from the users point-of-view, represent a physical
operation, e.g., movement, split, etc., of material.

This paper deals with the maintenance and testing of COMATS and is organized as follows:
Section 1) Introduction. Section 2) Maintenance of COMATS. Section 3) Testing process.
Section 4) Release Documentation. Section 5) Installation of new software on the production
system.

2.0 Maintenance: Changes and Releases

All changes to COMATS are controlled by a Configuration Management Plan and are done under
the auspices of a Change Request. There are three types of Change Requests: Software Change
Requests (SCRs) are used to authorize changes to the production software and some critical
reports; Report Change Requests (RCRs) are used to authorize new reports or changes to existing
reports; Data Change Requests (DCRs) are used to authorize changes to the data base itself,
including configuration and authorization data.

Implementation of Software Change Requests are those that have the greatest impact on the data
base because they authorize the modification of software that controls the data going into the data
base. For that reason, formal testing of all software changes is required. Since testing is such a
significant effort, the implementation of several SCRs are grouped together into what is referred to
as a release. All development and testing of the implementation of SCRs is done on MMTEST, the
test data base. After independent testing and validation have assured that the new release is
behaving properly, the upgraded software is installed on the production system.

After making the decision as to which SCRs are intended for the release, a typical release cycle
consists of the following steps: The developer 1) Writes implementation plans for each of the
SCRs, indicating which software modules, forms, reports, tables, and command files are affected
by each SCR. 2) Provides a description of the unit test cases for each SCR which will be
incorporated into the formal test suite. 3) Reserves appropriate modules from the software library.
4) Modifies the existing modules or writes new ones, as necessary to implement the SCRs. 5)
Tests the implementation to assure that it is correct. 6) Turns the completed modules, along with
the implementation plans, to a second developer for walk-through or code review. 7) Replaces

Maintenance/Testing of a Legacy Controlled Materials Tracking System at LLNL

existing modules and adds new modules to the software library. After all SCRs have been
implemented: 1) The system manager "builds" the application system, compiling all modified and
new modules from the library and linking them. 2) Independent testers execute the test suites
described in the next section. 3) If the release passes the test suites, the system manager places it
into production.

3.0 Testing Process

For each release, the testing effort is in parallel with the development effort. Each release requires
its own Test Plan and Test Procedure, which are written using the IEEE 829-1983 Standard. The
Test Plan describes the planned testing process which provides: a summary of the baselines to be
produced; a data flow diagram of the process from the first regression baseline through the final
SCR-specific baseline; and an estimated schedule.

The test procedure consists of two types of test suites: 1) a regression test suite, which tests all
pertinent features of the existing software and is used to assure that the functionality, performance
and security of the existing software will not be adversely affected by the implementation of
software changes; 2) a SCR-specific test suite, which tests all new software features and assures
that the implementation of the SCRs specified above is correct.

3.1 Baselines

A baseline consists of the hardware and software configuration to be tested, the initial state data
base, a test suite to be run, and the final state of the data base. Each release may require several
baselines to be produced. For a release implementing a change to only the application software, a
minimum of three baselines are required: 1) A regression baseline which runs the regression test
suite against the current production software; 2) a baseline which runs the same test suite against
the software to be released; and 3) a baseline which runs a suite specifically designed to test the
implementation of the SCRs in the release being tested.

Releases that include hardware and/or operating system and/or data base management system
upgrades may require additional baselines running the regression test suite. This is done to localize
problems that may occur with the upgrades.

3.2 Test Suites

Each test suite is divided into one or more test cases, with each test case designed to test a single
pertinent feature of the software. Each test case is divided into one or more sessions, where each
session consists of a login, a series of transactions to be performed, and a logoff.

Test cases are designed to be independent, and can be run in any order, with a few exceptions;
these exceptions are needed to get initial or final reports, and to place the data base in a desired
initial or final state. Within a test case, however, the sessions and transactions within a session
must be run in the specified order. Different test cases may be run in parallel, and a tester may be
asked to switch from one test case to another.

The configuration of MMTEST is very similar to that of MMA, the production data base.
MMTEST contains several "user" accounts that mimic the behavior of the real user accounts on
MMA. For each session in a test case, the tester logs into MMTEST as the specified user and
performs the transactions that are specified.

Each test case consists of two types of Excel documents. The first, called a "workbook" roughly
corresponds to the test design document in the IEEE 829-1983 standard. It is a list of sessions
and, for each session, a list of transactions to be performed. The workbook defines the data to be
used, contains the mathematical formulas necessary to predict what the tester will see on the screen
when performing a transaction, which models the behavior of the system. For example, if the

Maintenance/Testing of a Legacy Controlled Materials Tracking System at LLNL

tester is asked to split an item, and in the course of the transaction, COMATS displays default
values for the products, the workbook contains the calculations necessary to predict these defaults.

The second type of document is the test script, which is a step-by-step procedure which the tester
follows; there is one test script for each session. Since the tester need not be familiar with
COMATS, VAX/VMS, or Ingres, each step in the script specifies which value to type or function
key to press, and predicts the results of that entry.

The workbook and the test scripts are linked; the test script contains references to cells in the
workbook. In this way, changes can be made to the workbook and all associated references in the
test scripts will be automatically updated.

3.3 Validation

Validation is the process which assures that the software under test conditions has behaved
properly. It compares the state of the data base following the execution of a test suite with an
expected state. Regression validation compares the state of the data base for the second baseline
(new software) with the state of the data base for the first baseline (current software). For SCR-
specific validation, there is nothing to compare the final state of the data base with; therefore,
manual inspection is necessary. In addition, the nuclear materials data base has inherent
redundancies which must be checked to assure that consistency of the data base has been
maintained.

4.0 Release Documentation

Several documents are produced during a release. These include the test plan, workbook, and test
scripts described above. In addition, Test Incident Reports are generated throughout the testing
process.

Test Incident Reports (TIRs) are used to log abnormal incidents that occur during the testing and
validation process. A TIR describes a problem that occurred, has space for comments on the part
of the developer, and has space for describing the resolution. Many TIRs are the result of tester
error, and their resolution so indicates.

Some TIRs are the result of faults found in the software during the testing process. These TIRs
are resolved by either correcting the fault and retesting, or writing a Software Change Request to
correct the fault in a future release. All TIRs must be resolved before final release by either
correcting the fault, generating an SCR or explaining why neither of these options is necessary.

The final test document is a validation report which contains a statement that the software release
has passed all tests and may be placed into production. This statement is supported by: 1)
describing the testing and validation process; 2) summarizing problems that occurred during the
testing and validation process; and 3) explaining all anomalies and their resolution.

5.0 Cutover

The cutover process transfers all released software from the test system to the production system
and makes changes to the data base, if necessary. The released software includes executables,
command procedures, forms, and reports. Data base changes include adding new tables, views,
and makes structure changes to the existing tables and views. A complete backup of the
production system to tape and a disk backup copy of the current software and data base are created
before the cutover.

A set of command procedures is used to transfer the software to the production system and setup
the software access protection. If any of the data base tables' structure is changed in the release,
the data base table contents are downloaded to a text file before and after the change to verify that
the structure change on the table does not alter the data. After the cutover process is completed,
the new production system is backed up to tape.

Maintenance/Testing of a Legacy Controlled Materials Tracking System at LLNL

This work was performed under the auspices of the U.S. Dept of Energy at LLNL under contract no. W-
7405-Eng-48.

Charles Parrish - (510) 422-1306 - parrish3@llnl.gov

Charles Parrish has a Masters Degree in Computer Science from the University of
California at Davis. He has been working at the Lawrence Livermore National Laboratory
for 20 years, and has been in his current project for 6 years. Charles has written several of
the Test Plans, Test Procedures, and Validation Reports mentioned in this paper.

Wally Yee - (510) 422-8398 - yee3@llnl.gov

Wally Yee has a Bachelors Degree in Computer Science and Physics from Oregon State
University. He has worked in Hanford for 10 years and at Lawrence Livermore National
Laboratory for the past 6 years. He provides software maintenance, user support, system
support, and data base administration support for the COMATS system.

Gayle Zeigler - (510) 423-5931 - zeigler2@llnl.gov

Gayle Zeigler has a Bachelors Degree in Computer Information System from the University
of California Hayward. She has worked in the Quality Assurance field since 1976,
beginning with Quality Assurance/Control in manufacturing and expanding into Software
Quality Assurance. As a contractor she has provided software support to major
organizations. She provides general Software Quality Assurance direction to the COMATS
team which includes generating Test Plans, Test Procedures, Validations Reports and is
generally responsible for the overall testing process.

Address for all three authors is:
Lawrence Livermore National Laboratory
Mail Stop L-347
P.O. Box 808
Livermore, California 94450
FAX: (510) 423-1685

